Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD.
نویسندگان
چکیده
PURPOSE Iron is an essential element in human metabolism but also is a potent generator of oxidative damage with levels that increase with age. Several studies suggest that iron accumulation may be a factor in age-related macular degeneration (AMD). In prior studies, both iron overload and features of AMD were identified in mice deficient in the ferroxidase ceruloplasmin (Cp) and its homologue hephaestin (Heph) (double knockout, DKO). In this study, the location and timing of iron accumulation, the rate and reproducibility of retinal degeneration, and the roles of oxidative stress and complement activation were determined. METHODS Morphologic analysis and histochemical iron detection by Perls' staining was performed on retina sections from DKO and control mice. Immunofluorescence and immunohistochemistry were performed with antibodies detecting activated complement factor C3, transferrin receptor, L-ferritin, and macrophages. Tissue iron levels were measured by atomic absorption spectrophotometry. Isoprostane F2alpha-VI, a specific marker of oxidative stress, was quantified in the tissue by gas chromatography/mass spectrometry. RESULTS DKOs exhibited highly reproducible age-dependent iron overload, which plateaued at 6 months of age, with subsequent progressive retinal degeneration continuing to at least 12 months. The degeneration shared some features of AMD, including RPE hypertrophy and hyperplasia, photoreceptor degeneration, subretinal neovascularization, RPE lipofuscin accumulation, oxidative stress, and complement activation. CONCLUSIONS DKOs have age-dependent iron accumulation followed by retinal degeneration modeling some of the morphologic and molecular features of AMD. Therefore, these mice are a good platform on which to test therapeutic agents for AMD, such as antioxidants, iron chelators, and antiangiogenic agents.
منابع مشابه
The Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice
Hephaestin is a vertebrate multicopper ferroxidase important for the transfer of dietary iron from intestinal cells to the blood. Hephaestin is mutated in the sex-linked anemia mouse, resulting in iron deficiency. However, sex-linked anemia mice still retain some hephaestin ferroxidase activity. They survive, breed, and their anemia improves with age. To gain a better understanding of the role ...
متن کاملIron induced oxidative damage as a potential factor in age-related macular degeneration: the Cogan Lecture.
Iron is a potent generator of oxidative damage whose levels increase with age, potentially exacerbating age-related diseases. Several lines of evidence suggest that iron accumulation may be a factor in age-related macular degeneration (AMD). AMD retinas have more iron within the photoreceptors, RPE, and drusen than do age-matched control retinas. Accelerated AMD-like maculopathy develops in pat...
متن کاملHephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain.
BACKGROUND Iron accumulation in the central nervous system (CNS) is a common feature of many neurodegenerative diseases. Multicopper ferroxidases (MCFs) play an important role in cellular iron metabolism. However, the role of MCFs in the CNS in health and disease remains poorly characterized. OBJECTIVE The aim was to study the role of hephaestin (HEPH) and ceruloplasmin (CP) in CNS iron metab...
متن کاملImmunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina.
PURPOSE CNS iron accumulation is associated with several neurodegenerative diseases, including age-related macular degeneration. Intracellular overload of free iron is prevented, in part, by the iron export protein, ferroportin, and the iron storage protein, ferritin. The purpose of this study was to assess retinal localization and regulation of ferroportin and ferritin. METHODS Normal murine...
متن کاملImplications of altered iron homeostasis for age-related macular degeneration.
Reactive oxygen species (ROS) may contribute to the pathogenesis of age-related macular degeneration (AMD) and they can be produced in the Fenton reaction catalyzed by Fe3+ ions. Therefore, altered homeostasis of iron in the retina may be the source of ROS and its damage resulting in clinically detectable AMD symptoms. The results of some post mortem research indicate a higher concentration of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 49 6 شماره
صفحات -
تاریخ انتشار 2008